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because the portion
VK|C(k + G)| * Ak(14)

of each individual component of the
initial state is reflected during the state
change Ak.

The total momentum change is therefore
Apei + Aplat = J = ftAk,, (15)

exactly as for free electrons, Eqg. (10).
Thus from the definition of J, we have
hd"ifdt = F , (16)

derived in (5) by a different method. A
rigorous derivation of (16) by an en-
tirely different method is given in
Appendix E.

Holes

The properties of vacant orbitals in an
otherwise filled band are important in
semiconductor physics and in solid state
electronics. Vacant orbitals in a band are
commonly called holes, and without
holes there would be no transis—tors. A
hole acts in applied electric and
magnetic fields as if it has a positive
charge +e. The reason is given in five
steps in the boxes that follow.

1.

The total wavevector of the electrons in
a filled band is zero: 2k = 0, where the
sum is over all states in a Brillouin zone.
This result follows from the geometrical
symmetry of the Brillouin zone: every
fundamental lattice type has symmetry
under the inversion operation r—» — r
about any lattice point; it follows that
the Brillouin zone of the lattice also has
inversion symmetry. If the band is filled
all pairs of orbitals k and — k are filled,
and the total wavevector is zero.

If an electron is missing from an orbital

Bai vi phan

V. |Ck + G| - Ak {14)
cua ting thanh phan ¢ trang thai ban dau bi phan xa
trong qua trinh thay doi trang thai Ak.

Do d6, su thay d6i dong luong toan phan 1a
ﬂlP‘ntl + a-[’];-: = J = fidk 2 {15:1

Gidng nhu trudng hop electron ty do , Pt (10). Vi vay,
theo dinh nghia cta J, chung ta co

fidk/di = F | (16)

duogc rit ra trong (5) bang phuong phap khac. Phu luc E
trinh bay cu thé cach rut ra (16).

L trong

M3t khac, cac tinh chat cua céc orbital trong trong ving
hoa tri dong vai tro quan trong trong vat ly ban dan va
dién tir trang thai ran. Cac Obitan tréng trong mét ving
thudng dugc goi 1a 16 tréng, va néu khéng co cac 15
trbng, s& khéng cd cac transistor. Khi co6 dién truong
hoic tir truong ap vao, 16 tréng di chuyén giéng nhu
mot hat mang dién duong + e. Chung ta sé giai thich
hién twong nay théng qua nam budc trong hop bén
dudi.

1.

kh = _k‘, .
Téng vector song cua cac electron trong ving day hoan
toan bang 0: ¥ k = 0, trong d6 tong duoc lay trén tat ca
c4c trang thai trong vung Brillouin. Két qua nay duoc
suy ra tir tinh chat déi xang hinh hoc cia ving
Brillouin: mdi loai mang co ban dbi xang qua phép
nghich dao r » —r quanh bat ky diém mang nao; tir do
ching ta suy ra rang vung Brillouin cua mang ciing c6
tinh chat dbi xang nghich dao. Néu ving dugc dién day
hoan toan, tit ca cac cap orbital k va —k day va téng
vector song bang khong.

(17)




of wavevector ke, the total wavevector
of the system is — ke and is attributed
to the hole. This result is surprising: the
electron is missing from k™ and the
position of the hole is usually indicated
graphically as situated at k”, as in Fig. 7.
But the true wavevector k” of the hole is
— ke, which is the wavevector of the
point G if the hole is at E. The
wavevector — ke enters into selection
rules for photon absorption.

The hole is an alternate description of a
band with one missing elec-tron, and
we either say that the hole has
wavevector —Is* or that the band with
one missing electron has total
wavevector — kt>.

Figure 7 Absorption of a photon of
energy hw and negligible wavevector
takes an electron from E in the filled
valence band to Q iIn the conduction
band. If kc was the wavevector of the
electron at E, it becomes the wavevector
of the electron at Q. The total
wavevector of the valence band after the
absorption is —ke, and this is the
wavevector we must ascribe to the hole
if we describe the valence band as
occupied by one hole. Thus kh = — ke;
the wavevector of the hole is the same
as the wavevector of the electron which
remains at G. For the entire system the
total wavevector after the absorption of
the photon is kc + k/, = 0, so that the
total wavevector is unchanged by the
absorption of the photon and the
creation of a free electron and free hole.

2. eh(kh) = —ee(ke) .(18)

Here the zero of energy of the valence
band is at the top of the band. The lower
in the band the missing electron lies, the
higher the energy of the system. The
energy of the hole is opposite in sign to
the energy of the missing electron,

'Ehlzkh} = _'Ee(ku) . ':1'3}




because it takes more work to remove
an electron from a low orbital than from
a high orbital. Thus if the band is
symmet-ric, ee(ke) = ee( — ke) = —
eh(—ke)= —eh(kh). We construct in
Fig. 8 a band scheme to represent the
properties of a hole. This hole band is a
helpful representation because it appears
right side up.

3. Vic=ve. (19)

The velocity of the hole is equal to the
velocity of the missing electron. From
Fig. 8 we see that Veh(kh) = Vee(ke), so
that vh(kh) = ve(ke).

Figure 8 The upper half of the figure
shows the hole band that simulates the
dynamics of a hole, constructed by
inversion of the valence band in the
origin. The wavevector and energy of
the hole are equal, but opposite in sign,
to the wavevector and energy of the
empty electron orbital in the va-lence
band. We do not show the disposition of
the electron removed from the valence
band at ke.

4. mh = —me . (20)

We show below that the effective mass
Is inversely proportional to the curvature
d2e/dk2, and for the hole band this has
the opposite sign to that for an electron
in the valence band. Near the top of the
valence band me is negative, so that mh
IS positive.

5. h™ = e(E + "vhXB) . (21)
This comes from the equation of motion
ik |

(CGS) = -e(E +"ve X B) (22)

that applies to the missing electron when
we substitute — k” for ke and V/, for
ve. The equation of motion for a hole is
that of a particle of positive charge e.
The positive charge is consistent with




the electric current carried by the
valence band of Fig. 9: the current is
carried by the unpaired electron in the
orbital G:
i = 2)Vv(G) =(-e)[-y(E)] = ev(E) ,
(23)
which is just the current of a positive
charge moving with the velocity
as—cribed to the missing electron at E.
The current is shown in Fig. 10.
Effective Mass
When we look at the energy-wavevector
relation e = (h2/2m)k2 for free
electrons, we see that the coefficient of
k2 determines the curvature of e versus
k. Turned about, we can say that 1/m,
the reciprocal mass, determines the
cur—vature. For electrons in a band there
can be regions of unusually high
curva-ture near the band gap at the zone
boundary, as we see from the solutions
in Chapter 7 of the wave equation near
the zone boundary. If the energy gap is
small in comparison with the free
electron energy A at the boundary, the
cur—vature is enhanced by the factor
A/Eg.
In semiconductors the band width,
which is like the free electron energy, is
of the order of 20 eV, while the band
gap is of the order of 0.2 to 2 eV. Thus
the reciprocal mass is enhanced by a
factor 10 to 100, and the effective mass
iIs reduced to 0.1-0.01 of the free
electron mass. These values apply near
the band gap; as we go away from the
gap the curvatures and the masses are
likely to approach those of free
electrons.
To summarize the solutions of Chapter 7
for U positive, an electron near the
lower edge of the second band has an
energy that may be written as
e(K) = ec + (tftmK2 ; mm =

j = (—eW(C) =(—e)[~VE)] = ev(E) , (23)‘

eK) =€, + B¥2m)KE ;.  mym = V[(2AU)-1] . (24)




I/[(2QAIC))-1] . (24)

Here K is the wavevector measured
from the zone boundary, and me denotes
the effective mass of the electron near
the edge of the second band. An elec-
tron near the top of the first band has the
energy

e(K) — €v — (h2/2mh)K2 ; mh/m =
1[(2A/ICT) +1]. (25)

The curvature and hence the mass will
be negative near the top of the first
band, but wc have introduced a minus
sign into (25) in order that the symbol
mh for the hole mass will have a
positive value—see (20) above.

The crystal does not weigh any less if
the effective mass of a carrier is less
than the free electron mass, nor is
Newton s second law violated for the
crystal taken an a whole, ions plus
carriers. The important point is that an
electron in a periodic potential is
accelerated relative to the lattice in an
applied clcctric or magnetic field as if
the mass of the electron were equal to an
effective mass which we now define.
We differentiate the result (1) for the
group velocity to obtain

N ==, (26) dt dk dt \dk dt /

We know from (5) that dk/dt = F/h,
whence

_(1d2e\vp_h2”7l:g /Qr2v
dt\n2dk2) 1 °r d*e/dk2 dt' ~

If we identify h2l(cfe/dk2) as a mass,
then (27) assumes the form of Newton's
second law. We define the effective
mass m* by

_L=

h2dk?2

It is easy to generalize this to take
account of an anisotropic electron en-
ergy surface, as for electrons in Si or

e(K} =g, — (H%2m, 1 K° . mgm = LT+ 17 .
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Ge. We introduce the components of the
reciprocal effective mass tensor
J \ _1diel rfiy/i\”»7m» tfdk~dk, > dt
[J>
where fx, v are Cartesian coordinates.
Physical Interpretation of the Effective
Mass
How can an electron of mass m when
put into a crystal respond to applied
fields as if the mass were m*? It is
helpful to think of the process of Bragg
re-flection of electron waves in a
lattice. Consider the weak interaction
approxi-mation treated in Chapter 7.
Near the bottom of the lower band the
orbital is represented quite adequately
by a plane wave exp(ikx) with
momentum hk; the wave component
exp[t(& — G)i] with momentum h(k—
G) is small and increases only slowly as
k is increased, and in this region m* —
m. An increase in the reflected
component exp[i(/c — G)x] as k is
increased represents  mo-mentum
transfer to the electron from the lattice.
Near the boundary the reflected
component is quite large; at the bound-
ary it becomes equal in amplitude to the
forward component, at which point the
eigenfunctions are standing waves,
rather than running waves. Here the

momentum component ft( — | G)
cancels the momentum component ft(|
G).

A single electron in an energy band may
have positive or negative effective mass:
the states of positive effective mass
occur near the bottom of a band
be-cause positive effective mass means
that the band has upward curvature
(id2e/dk2 is positive). States of negative
effective mass occur near the top of the
band. A negative effective mass means
that on going from state k to state k +

B

1 P

)ﬂ.,” w2 dk, dk, °

(29)




Ak, the momentum transfer to the lattice
from the electron is larger than the
momentum transfer from the applied
force to the electron. Although k is
increased by Ak by the applied electric
field, the approach to Bragg reflection
can give an overall decrease in the
forward momentum of the -electron;
when this happens the effective mass is
negative (Fig. 11).

As we proceed in the second band away
from the boundary, the amplitude of
exp[i(/lc — G)x] decreases rapidly and
m* assumes a small positive value. Here
the increase in electron velocity
resulting from a given external impulse
is larger than that which a free electron
would experience. The lattice makes up
the difference through the reduced recoil
it experiences when the ampli-tude of
exp[i(k — G)x] is diminished.

If the energy in a band depends only
slightly on A:, then the effective mass
will be very large. That is, m*/m > 1
when d2e/dk2 is very small. The tight-
binding approximation discussed in
Chapter 9 gives quick insight into the
for-mation of narrow bands. If the
wavefunctions centered on neighboring
atoms overlap very little, then the
overlap integral is small; the width of
the band narrow, and the effective mass
large. The overlap of wavefunctions
centered on neighboring atoms is small
for the inner or core electrons. The
4/electrons of the rare earth metals, for
example, overlap very little.

Effective Masses in Semiconductors

In many semiconductors it has been
possible to determine by cyclotron
resonance the effective masses of
carriers in the conduction and valence
bands near the band edges. The
determination of the energy surface is




equivalent to a determination of the
effective mass tensor (29). Cyclotron
resonance in a semiconductor is carried
out with centimeter wave or millimeter
wave radia-tion at low carrier
concentration.

The current carriers are accelerated in
helical orbits about the axis of a static
magnetic field. The angular rotation
frequency o)c is

where m* is the appropriate cyclotron
effective mass. Resonant absorption of
energy from an rf electric field
perpendicular to the static magnetic
field (Fig. 12) occurs when the rf
frequency is equal to the cyclotron
frequency. Holes and electrons rotate in
opposite senses in a magnetic field.

We consider the experiment for m*/m =
0.1. At/C =24 GHz, or 0)c =1.5 X 1011
s 1, we have B = 860 G at resonance.
The line width is determined by the
collision relaxation time r, and to obtain
a distinctive resonance it is necessary
that coct 1. The mean free path must
be long enough to permit the average
carrier to get one radian around a circle
between collisions. The re-quirements
are met with the use of higher frequency
radiation and higher magnetic fields,
with high purity crystals in liquid
helium.

In direct-gap semiconductors with band
edges at the center of the Bril- louin
zone, the bands have the structure
shown in Fig. 13. The conduction band
edge is spherical with the effective mass
moO:

ec=E, +h2k2/2me, (31)

B (static)

Figure 12 Arrangement of fields in a
cyclotron resonance experiment in a
semiconductor. The sense of the

¢, = E, + i%%2m, , (31)




circulation is opposite for electrons and
holes.

Figure 13 Simplified view of the band
edge structure of a direct-gap
semiconductor.

Table 2 Effective masses of electrons
and holes in direct-gap semiconductors
referred to the valence band edge. The
valence bands are characteristically
threefold near the edge, with the heavy
hole hh and light hole Ih bands
degen-erate at the center, and a band
soh split off by the spin-orbit splitting
A:

ejjrfiy = -h2k2/2mhh ; eD(lh) = -
h2k212mVI1 ;

(32)

€v(soh) = -A - h2k2/1msoh .

Values of the mass parameters are given
in Table 2. The forms (32) are only
approximate, because even close to k =
0 the heavy and light hole bands are not
spherical—see the discussion below for
Ge and Si.

The perturbation theory of band edges
(Problem 9.8) suggests that the electron
effective mass should be proportional to
the band gap, approximately,

I. h=~Km (17)

€,(hh) = —A%>2my,, €(h) = — A% 2my, .

(32
€,(s0h) = —A — A%k om,,, . 32)






